The Crystal Structures of Sr₆Mg₂₃, SrMg₄, Ba₆Mg₂₃ and BaLi₄

BY FREDERICK E. WANG,* FRANK A. KANDA, CHARLES F. MISKELL AND ADEN J. KING

Chemistry Department, Syracuse University, Syracuse, New York, U.S.A.

(Received 5 August 1963 and in revised form 11 February 1964)

The crystal structures of Sr_6Mg_{23} , Ba_6Mg_{23} , $SrMg_4$ and $BaLi_4$ have been determined by the singlecrystal X-ray diffraction method. Sr_6Mg_{23} and Ba_6Mg_{23} are isomorphous with Th_6Mn_{23} and Sr_6Li_{23} and crystallize in space group Fm3m, with unit-cell dimensions $a_0 = 14.91$ and $a_0 = 15.26$ Å, respectively. $SrMg_4$ is complex with 90 atoms in a unit cell of space group $P6_3/mmc$, with unit-cell dimensions $a_0 = 10.51$, $c_0 = 28.36$ Å. $BaLi_4$, the only compound in the Ba-Li system, has been completely characterized, (including all Li atom positions). Its space group is $P6_3/mmc$ with cell dimensions, $a_0 = 11.02$, $c_0 = 8.89$ Å.

The atomic arrangements of $SrMg_4$, Sr_6Mg_{23} , Ba_6Mg_{23} and $BaLi_4$ are closely related although their crystal structures are different.

Introduction

The investigation of the Sr-Mg phase diagram by Vosskühler (1939), Klemm & Kinkelacker (1947) and Ray (1947) disclosed the existence of four compounds, which were assigned the formulae SrMg₂, SrMg₃, SrMg₄ and SrMg₉, and disproved the existence of the compound SrMg reported by Nowotny (1942). SrMg₂ was investigated by Hellner & Laves (1943) who found the structure to be a 'Laves phase' of the C_{14} type. The crystal structure investigation of SrMg₉ by Miskell (1948) was inconclusive as far as the atomic positions were concerned. The formula SrMg₉ was later proved to be incorrect by Kripyakevich & Evdokimenko (1962) and Wang, Kanda, Miskell & King (1963), both of whom assigned the formula Sr₂Mg₁₇ to this compound.

In many respects the Ba-Mg phase diagram, determined by Klemm & Kinkelacker (1947), Zeek (1955) and Weibke & Schmidt (1940), is similar to that of the Sr-Mg system. Except for the nonexistence of BaMg₃, the Ba-Mg system duplicates the series of compounds, SrMg₂, SrMg₄, and SrMg₉ found in the Sr-Mg system. The structure of BaMg₂ was found to be isomorphous with that of SrMg₂ by Hellner & Laves (1943). Miskell (1948) reported that BaMg₉ was isomorphous with SrMg₉; Goldish & Marsh (1955) reported that it was a disordered phase which possessed a stoichiometric Ba:Mg ratio of 1:10.5. However, both proposed structures for BaMg₉ were independently proven to be in error by Kripyakevich & Evdokimenko (1962) and Wang et al. (1963), who concluded that BaMg₉ is not isomorphous with SrMg₉ (correct formula Sr₂Mg₁₇) and should be assigned the formula Ba₂Mg₁₇.

The current investigation was carried out to clarify the structural relationships between the intermediate phases of the two systems Sr-Mg and Ba-Mg. Consideration of the similarity of the physical properties of Mg and Li (Hume-Rothery, 1962) led to the extension of this structure study to include BaLi₄, which had been reported by Keller (1958) in his phase diagram study.

Experimental

In a previous paper (Wang, Kanda & King, 1962), the purity of the metals and the method of sample preparation were discussed in detail. For the crystal structure studies of the Sr-Mg system, four alloys of composition 50, 25, 15 and 8 at.% Sr were prepared. These compositions were chosen so that they fell between the compound compositions indicated by the phase diagram. X-ray powder diffraction patterns of samples from the top and bottom portions of the 50 at.% Sr alloy showed that the bottom portion consisted of Sr(f.c.c.); whereas the top portion consisted of a mixture of Sr(f.c.c.) and SrMg₂ (hexagonal). Similar investigations were carried out with the remaining alloys and these studies confirmed that only four compounds did exist in this system. Analogous procedures carried out for the alloys of the Ba-Mg system revealed that only three compounds existed in this system. Single crystals were mechanically extracted under oil from each alloy matrix which had been shown by a powder pattern to consist of a distinct phase. Owing to the irregular shapes of the crystals, the error due to absorption was minimized by selecting crystals of small size (0.05-0.10 mm average diameter) rather than by application of an absorption correction. Equi-inclination Weissenberg photographs were taken with $Cu K\alpha$ radiation. Precise lattice constants were determined from zero layer Weissenberg photographs calibrated against NaCl. Density measurements were made by the flotation method, using carbon tetrachloride and methylene iodide as two miscible liquids. The results

^{*} Present address: The Applied Physics Department, U.S. Naval Ordnance Laboratory, White Oak, Silver Spring, Maryland, U.S.A.

Compound	$\mathbf{SrMg_4}$	$BaLi_4$	$\rm Sr_6Mg_{23}$	$\mathrm{Ba_6Mg_{23}}$
Diffraction symmetry	6/mmm	Same as $SrMg_4$	m3m	Same as $\rm Sr_6Mg_{23}$
Extinction	$hk \cdot L$: no restriction $hh \cdot L$: $L \neq 2n$ $h\overline{h} \cdot L$: no restriction $h0 \cdot L$: no restriction	Same as $SrMg_4$	$\begin{array}{c} hkL: \ h+k, \ k+L, \\ (h+L) \neq 2n \end{array}$	Same as $\rm Sr_6Mg_{23}$
Space group	$P6_3/mmc$	Same as $SrMg_4$	Fm3m	Same as Sr_6Mg_{23}
Lattice constants	$a_0 = 10.511 \pm 0.008$ Å $c_0 = 28.362 \pm 0.011$ Å	$\begin{array}{l} a_{0} = 11 \cdot 026 \pm 0 \cdot 023 \text{ \AA} \\ c_{0} = 8 \cdot 891 \pm 0 \cdot 010 \text{ \AA} \end{array}$	$a_0 = 14.914 \pm 0.015$ Å	$a_0 = 15 \cdot 263 \pm 0 \cdot 018$ Å
Density	Calc. $2 \cdot 03$ g.cm ⁻³ Obs. $2 \cdot 11$ g.cm ⁻³	Calc. 1.77 g.cm ⁻³ Obs. 1.75 g.cm ⁻³	Calc. $2 \cdot 18 \text{ g.cm}^{-3}$ Obs. $2 \cdot 15 \text{ g.cm}^{-3}$	Calc. 2.58 g.cm^{-3} Obs. 2.52 g.cm^{-3}

Table 1. Preliminary crystallographic data

of this preliminary investigation are given in Table 1. Intensities were estimated visually with the use of the multiple film technique and a graduated intensity scale prepared from the same crystal. The reflection data, obtained in this manner, were corrected to $|F_o(hkL)|^2$ then scaled statistically. The ERFR-2 (Sly, Shoemaker & Van den Hende, 1962) and ORFLS (Busing, Martin & Levy, 1962) programs were used for the computations of three-dimensional Fourier syntheses and least-square refinements on an IBM 7094 computer.

Structure determination

Sr₆Mg₂₃ and Ba₆Mg₂₃

Careful side by side comparison of the powder pattern of Sr_6Li_{23} with that of the top portion of the 25 at.% Sr conclusively proved that the two structures were isomorphous.* Single crystals were obtained from the alloy matrix, and Weissenberg photographs were taken about the *c* axis of the zero through eighth layer. From these photographs, the intensities of a total of 195 symmetry independent reflections were obtained.

Previously, Sr₆Li₂₃ had been found to be isomorphous with Th₆Mn₂₃ (Florio et al., 1952) and its atomic parameters had been determined (Wang, King & Kanda, 1962). Since this compound is isomorphous with Th_6Mn_{23} and Sr_6Li_{23} , its space group is Fm3mand its empirical formula is Sr₆Mg₂₃. The equivalent atomic positions found for Sr₆Li₂₃ were used as the starting point of a least-squares refinement. After three cycles of isotropic refinement, a reliability index. $\Sigma||F_o| - |F_c||/\Sigma|F_o|$ (hereafter to be denoted R(F)) of 0.16 was obtained. The final atomic parameters are given in Table 2 and the F_o 's are compared with the $F_{\rm c}$'s in Table 5. The existence of Ba₆Mg₂₃ as well as its isomorphism with Sr₆Li₂₃ was established solely by the careful investigation and comparison of powder patterns. The atomic arrangement of 50 Mg atoms surrounding 6 octahedrally arranged Sr atoms is shown in Fig. 1(a).

Table 2. Sr₆Mg₂₃

(a) Atomic positions and parameters

(standard deviations of parameters in Å in parenthesis) Space group; Fm3m

$24 \operatorname{Sr}(e);$	with $x = 0.2041 \pm 0.0012(\pm 0.018 \text{ Å})$
$4 \operatorname{Mg}(b);$	special positions
$24 \operatorname{Mg}(d);$	special positions
$32 \operatorname{Mg}(f)_1;$	with $x = 0.3741 \pm 0.0042(\pm 0.062 \text{ Å})$
$32 \text{ Mg}(f)_{2};$	with $x = 0.1774 \pm 0.0041(\pm 0.061 \text{ Å})$

(b) Interatomic distances

Sr(e) - Sr(e)	4.303 ± 0.036 Å
Sr(e) - Mg(d)	3.778 ± 0.060
$\operatorname{Sr}(e) -\operatorname{Mg}(f)_1$	3.667 ± 0.058
$Sr(e) -Mg(f)_2$	$3\cdot766\pm0\cdot049$
$Mg(b) - Mg(f)_1$	$3 \cdot 247 \pm 0 \cdot 079$
$Mg(d) - Mg(f)_1$	3.224 ± 0.080
$Mg(d) - Mg(f)_2$	$3{\cdot}056\pm0{\cdot}072$
$\operatorname{Mg}(f)_{1}-\operatorname{Mg}(f)_{2}$	$3 \cdot 464 \pm 0 \cdot 081$

SrMg₄

It has been shown above that four compounds exist in this system, three of which are SrMg₂, Sr₂Mg₁₇ and Sr₆Mg₂₃. There is little doubt that the structures determined for SrMg₂ and Sr₂Mg₁₇ correspond to the compounds SrMg₂ and SrMg₉ indicated by the phase diagram. Furthermore, in view of the fact that compounds of the type A₆B₂₃ (e.g. Th₆Mn₂₃, Sr₆Li₂₃) were originally assumed to be AB_4 in the phase diagram studies, one is inclined to assign the structure of Sr₆Mg₂₃ to the diagram-predicted compound, SrMg₄. If these assignments are correct, the remaining compound indicated by the phase diagram should be SrMg₃. However, the number of molecules in a unit cell based on the postulated formula Sr_6Mg_{18} was calculated to be 3.58. This suggested that the true formula for the compound was not SrMg₃. A series of varied formulae, Sr₆Mg₁₉, Sr₆Mg₂₀, Sr₆Mg₂₁, Sr₆Mg₂₂ used in a similar calculation indicated that the number of molecules in a unit cell approached the whole number 3 as the ratio of Sr atoms to Mg atoms approached one to four. This fact, along with the similarity of its density (2.11 g.cm^{-3}) to the 2.15

^{*} About the time the preliminary publication of this work (Wang *et al.*, 1963) was submitted, Gladyschevskii, Kripyakevich, Kuzma & Teslyuk (1962) confirmed independently by the powder method that Sr_6Mg_{23} and Ba_6Mg_{23} are isomorphous with Th_6Mn_{23} (Florio, Rundle & Snow, 1952).

Fig. 1. (a), (b) Octahedral cluster of 6 Sr atoms surrounded by 50 Mg atoms in Sr_6Mg_{23} (f.c.c.) and $SrMg_4$ (hexagonal). (c) Triangular cluster of 3 Sr atoms surrounded by 33 Mg atoms in $SrMg_4$. (d) Triangular cluster of 3 Ba atoms surrounded by 29 Li atoms in BaLi₄.

 $g.cm^{-3}$ density of Sr_6Mg_{23} crystals, suggested the possible existence of an allotropic modification of Sr₆Mg₂₃. It was decided, therefore, to determine the structure first and then deduce the formula. Five layers of Weissenberg photographs, rotated about the orthonex axis and 3 layers rotated about the c axis yielded a total of 581 symmetry independent reflections. A three-dimensional Patterson synthesis computed from these reflection data immediately showed that the vectors form two octahedral clusters of six Sr atoms (orientated as shown in Fig. 1(b)), in the u-v planes at w levels of 0/120, 17/120 and 43/120. The extinctions observed (Table 1) together with the fact that two octahedral clusters of this type can only be placed at $\pm (x, 2x, z; \overline{2}\overline{x}, \overline{x}, z; x, \overline{x}, z;$ $x, 2x, \frac{1}{2}-z; \overline{2x}, \overline{x}, \frac{1}{2}-z; x, \overline{x}, \frac{1}{2}-z)$ led to the selection of space group $P6_3/mmc$ for this structure. In seeking the remaining Sr atomic positions, a misinterpretation

of Patterson vectors was made, leading to the erroneous assignment of the atoms: 2 Sr in (c) and 4 Srin (f) with z = -21.5/120. This error was due to a certain degree of homometry between this structure and the true structure. After several cycles of threedimensional least-squares refinement on the false structure, the R(F) remained at 0.47; whereas after three cycles of similar refinement on the true structure, the R(F) value was reduced to 0.32. A threedimensional difference Fourier synthesis, from which the contribution of the 18 Sr atoms had been subtracted, showed the location of 72 Mg atoms. This confirmed that the formula was SrMg₄, ruling out the possibility of an allotropic form of Sr₆Mg₂₃. The final three-dimensional isotropic least-squares refinement based on all atoms reduced the R(F) to 0.12 after three cycles. The final atomic parameters and interatomic distances are given in Table 3.

Table 3. SrMg₄

(a) Atomic positions and parameters (standard deviations of parameters in Å in parenthesis)

Space group;	$P6_3/mmc$	
$12 \mathrm{Sr}(k);$	with $x =$	$0.1369 \pm 0.0004(\pm 0.004 \text{ Å})$
	z =	$0.0625 \pm 0.0001(\pm 0.003)$
$6 \operatorname{Sr}(h);$	with $x =$	$0.0478 \pm 0.0005(\pm 0.005)$
$4 \operatorname{Mg}(e);$	with $z =$	$0.1580 \pm 0.0011(\pm 0.031)$
$4 \operatorname{Mg}(f)_1$	with $z =$	$0.0373 \pm 0.0010(\pm 0.028)$
4 $Mg(f)_2$;	with $z = -$	$-0.1427 \pm 0.0010(\pm 0.028)$
$6 \operatorname{Mg}(g);$	special posi	tions
6 Mg(h);	with $x = -$	$-0.1011 \pm 0.0015(\pm 0.015)$
12 Mg(k)';	with $x =$	1/2 (special position)
	z =	$0.1177 \pm 0.0005(\pm 0.014)$
$12 \text{ Mg}(k)_1;$	with $x = -$	$-0.2321 \pm 0.0011(\pm 0.011)$
	z =	$0.0546 \pm 0.0005(\pm 0.014)$
$12 \text{ Mg}(k)_2;$	with $x = -$	$-0.1677 \pm 0.0010(\pm 0.010)$
	z =	$0.1540 \pm 0.0005(\pm 0.014)$
12 $Mg(k)_3$;	with $x =$	$0.1772 \pm 0.0010(\pm 0.010)$
	z =	$0.1897 \pm 0.0005(\pm 0.014)$

(b) Interatomic distances

Sr(k) - Sr(k)	4.316 ± 0.012 Å
Sr(h) - Sr(h)	4.255 + 0.009
Sr(k) - Mg(q)	3.779 + 0.019
Sr(k) = Mg(k)	3.685 ± 0.016
$\operatorname{Sr}(k) = \operatorname{Mg}(f)$	3.646 ± 0.022
Sr(k) = Mg(g)/1	3.675 ± 0.020
SI(k) = Mg(c) SI(k) = Mg(c)	3.687 ± 0.021
Sr(k) = Mg(k)	3.037 ± 0.031
$Sr(k) - Mg(k)_3$	3.678 ± 0.022
$Sr(h) - Mg(k)_2$	3.860 ± 0.032
$Sr(h) - Mg(k)_3$	3.714 ± 0.021
Sr(h) - Mg(h)	3.675 ± 0.030
Sr(h) - Mg(k)'	$3\cdot794\pm0\cdot038$
$Mg(q) - Mg(k)_1$	3.067 ± 0.048
Mg(q) - Mg(k)'	$3\cdot338\pm0\cdot089$
Mg(q) - Mg(f)	$3\cdot209\pm0\cdot082$
Mg(k), -Mg(k),	3.192 ± 0.080
Mg(k) - $Mg(k)'$	$3\cdot198\pm0\cdot078$
Mg(k) - Mg(k)'	$3\cdot193\pm0\cdot092$
$Mg(k)_{2} - Mg(e)$	3.055 ± 0.086
$Mg(k)_{2} - Mg(k)_{2}$	$3\cdot316\pm0\cdot084$
Mg(e) $-Mg(h)$	3.193 ± 0.081
Mg(f) - Mg(k)'	3.116 + 0.089
$M_{\alpha}(f) = M_{\alpha}(h)$	3.138 ± 0.075
$m_{\rm E}(J)_2 - m_{\rm E}(\kappa)_3$	0.100 T 0.010

The F_c 's based on these parameters are compared with the F_o 's in Table 5. Projections of the atomic arrangements on the xy plane at various z levels within the interval of z=0 to $z=\frac{1}{4}$ are shown in Fig. 2. The 18 Sr atoms are grouped in two octahedral and two triangular clusters. The Mg atomic arrangement surrounding the octahedrally clustered Sr atoms is the same as the arrangement of Mg atoms in Sr₆Mg₂₃ despite the fact that the octahedral groups in SrMg₄ share different Mg atoms. These arrangements are shown in Fig. 1(a) and (b).

BaLi₄

The present investigation, by the single-crystal method, gave hexagonal unit cell dimensions (Table 1) which substantiated the lattice constants given by Keller (1958). Keller, using only powder diffraction data, assigned the space group $P6_3/mmc$ to the

Fig. 2. $SrMg_4$; Projection of the atoms onto the xy plane (full cell) at various levels of z.

Table 4. BaLi₄

(a) Atomic positions and parameters

(standard deviations of parameters in Å in parenthesis) Space group; $P6_3/mmc$ (10, ..., -0.4720 + 0.0002(+0.0017 Å))

$6 \operatorname{Ba}(h);$	with $x = 0.4720 \pm 0.0002(\pm 0.0017)$.
2 Li(a);	special positions
4 Li(f);	with $z = 0.5808 \pm 0.0076(\pm 0.083)$
6 Li(h);	with $x = 0.1027 \pm 0.0057(\pm 0.050)$
$12 \operatorname{Li}(k);$	with $x = 0.1621 \pm 0.0087(\pm 0.077)$
	$z = 0.5615 \pm 0.0117(\pm 0.103)$

(b) Interatomic distances

	Ba(h) - Ba(h)	(intra-triangular) 4.586 ± 0.021	Å
	Ba(h) - Ba(h)	(inter-triangular) 4.571 ± 0.018	
	Ba(h) - Li(h)	3.838 ± 0.072	
	$\operatorname{Ba}(h)^* - \operatorname{Li}(f)$	3.947 ± 0.068	
	$\operatorname{Ba}(h)$ [†] – Li(f)	4.012 ± 0.056	
	$\operatorname{Ba}(h)^* - \operatorname{Li}(k)$	3.605 ± 0.068	
	$\operatorname{Ba}(h)^{\dagger}-\operatorname{Li}(k)$	3.873 ± 0.069	
	Li(a) -Li(k)	3.138 ± 0.089	
	Li(h) -Li(k)	$2 \cdot 969 \pm 0 \cdot 096$	
	Li(a) -Li(h)	2.963 ± 0.110	
	$\operatorname{Li}(f) - \operatorname{Li}(k)$	$3 \cdot 255 \pm 0 \cdot 088$	
*	Atom located	at $z = \frac{1}{4}$. \dagger Atom located at	$z = \frac{3}{4}$.

structure, and placed the six Ba atoms in the special positions in (g) which required a special condition

for limiting possible reflections: $hk \cdot L$; L=2n (Li scattering is regarded as negligible). But in the single crystal data, such a condition was not observed and thus ruled out the special position assignment. From six layers of Weissenberg photographs, rotated about the orthohex axes, a total of 334 independent reflections were obtained.

Based on the consistent atomic arrangement found for the heavy atoms in Sr_6Mg_{23} , Ba_6Mg_{23} and $SrMg_4$ (*i.e.* in clusters of six or three), the following was postulated: The six Ba atoms in the unit cell exist in triangular groups of three, parallel to the xy plane, and located at $z = \frac{1}{4}$ and $\frac{3}{4}$. This postulate was considered to be reasonable because the length of the c_0 axis is 8.89 Å, just about equal to four times the radius of the Ba atom, 2.17 Å. To test the correctness of this postulate, two Harker sections, w=0 and $\frac{1}{2}$, were computed. The result confirmed that the Ba atoms are clustered in triangular groups. This provided the basis for assigning the space group $P6_3/mmc$, which determined the relative positions of the two triangular clusters. The agreement between $F_o^2(hk\cdot L)$ and $F_c^2(hk\cdot L)$ based on these six Ba atoms was 30%, which further confirmed the accuracy of the initial postulate. Owing to the relatively low atomic scattering power of the Li atoms, a difference Fourier synthesis

Gable 5. Observed and a	calculated s	structure fo	actors for	Sr_6Mg_{23}	$SrMg_4$	and Ba	Li4
-------------------------	--------------	--------------	------------	---------------	----------	--------	-----

Table 5 (cont.)

L	OBS	CAL	L	OBS	CAL	r	OBS	CAL	L	OBS	CAL	L	ÓBS	CAL	L	OBS	CAL	L OBS	CAL	L OBS	CAL
13	102	62-	(3.4	··L)	1.00	(4,4	•L)		6	77	93	4	45	61-	2	95	102	5 98	127.	(5,5·L)	
15	190	215-	ĩ	168	135-	4	145	124-	8	43	75-	В	30	41-	4	65	82-	7 81	107	0 246	187
16	143	120 145	2	219 295	187-	10	205 100	186	10	84 45	114	(1.2	2·L)		6	130	150 78	8 22 9 59	40- 92-	4 231	170
18	109	83	6	180	154	20	161	108	11	83	98-	0	47	88-	7	110	135-	(3.5.1.)		8 151	158-
29	64	79-	10	150	101	20	130	100	(04	•L)		1	- 66	123-	.9	87	24	0 211	150	(5.6·L)	
(2.5	·L)		12	78	65	2,5	201	174	2	129	142 151-	2	65	88	10	37	36	4 115	137	0 52	63-
3	143 377	202- 342	14 15	85 135	72- 88-	3	93 70	85 59-	3	17	28 137	3	77 52	93 70-	(2,4)	L) 66	76	8 81	118-	4 52	53-
4	56	49-	16	163	141-	6	87	69-	6	88	105-	5	83	99-	1	29	32-	(3.6.1)		0 41	51
ģ	166	145	18	125	117-	8	305	258-	10	54	86-	ž	55	80	3	14	18	0 40	35-	(5,7·L) 0 239	183
6	77	55	22	72	37	10	135	132-	(05	·L)		9	43	54- 65-	5	30	34-	2 34	39	2 213	177-
- 9 11	154 124	150-	23 26	78 84	48-	11	136 96	86 84 -	0	153 290	130- 220	().3	3.L)		6 8	44 43	57- 68	4 33	35-	(1.4
12	67 278	77 -	27	159	189-	14	210	180	2	139	125	0	20	3- 36-	10	31	48-	5 41 6 24	47- 33	0 41	54-
16	226	245-	(3,5	5.L)	~ ~	21	53	71-	4	78	109-	3	30	48	(2,5.	L)		7 30	47	1 41 2 45	57 57
19	287	298	1	88	55	22	69	86	6	86	106	(1,4	4.L)		1	211	103-	(3.7·L)		3 45	49-
21 22	101 125	8- 143	23	302 244	261- 174	24 25	146 58	175- 84-	7	129 67	159- 85-	ů	24 108	29- 116-	23	112 205	105 179-	2 228 2 214	157 153-		-53-
23 25	123	119	4	87 167	111	26	67	85-	9	96 54	135	2	24 72	34	4	96	96-	4 195	150	(6.6·L) 0 47	41-
26	78	69	7	103	57	(4,6	·L)	164	104		00	5	61	95-	6	79	87	(2.0.1)	152-	2 69	68 55-
29	146	221-	9	75	90-	3	120	146-	0	69	64	9	51	76-	ś	72	73-	0 24	23-	(6.7.1)	
(2,6	·L)		2	250 217	196- 181	4 9	81 92	88- 93-	1	84 71	75- 71	10	31	25	9	110	129	1 26 2 21	21 22	0 46	43-
0	72 107	51- 133	13	214 209	159-	10	113 131	93 126	4	20 49	32 64-	(),5	5+L) 65	63	(2,6)	L) 22	22-	3 20	13- 24-	2 56	55
2	42	64	:e	214	182-	12	53	50-	67	29	42-	1	56	61-	ì	67 74	69- 76	5 20	19	3 17 4 61	14 45-
4	54	64-	20	101	102	14	116	109	9	26	51-	3	30	43	5	51	54-	(201)	2-		
8	148	155	22	97	81-	17	83	89	(07	•L)		5	40	54-	7	51	63	0 158	137		
10	176	165	23 24	161	49 160	20	190	100-	1	242	105-	7	30	45-		41	51-	4 125	125		
11	225 120	232- 122	27	87	108-	21	77	85-	23	119 206	118 181-	8	36	45	(2,7.	L) 76	91-	(3,10·L)			
20 21	80 154	60- 165	(3,6	5+L) 130	129-	(5,5	395	369	4	92 148	100-	(1,0	5.L) 71	78-	1	161 87	152 88	0' 34	40- 6P		
24	105	111	4	74	41-	4	148	122	ě	73	94	3	61	85 66-	3	145	130-	2 32	37		
26	75	99	ž	76	54	.8	125	141-	ŝ	48	86-	7	40	62	5	153	138	(4,4·L)			
10.7		103-	16	189	162-	12	136	113	4		134		28	60-	7	85	119-	()	27		
6.7	145	135-	:9	65	48-	16	272	278	0	·L/ 56	48-	6	123	100			00-	0 112	73-		
2	126	181- 105-	22	63 61	68 46	20 22	94 175	95 236-	1	147	120- 36	1 2	25 100	28- 93-	(2,8.	L) 46	45-	2 115	114 90		
3	88 376	121-	13	7.1)		24	63	108-	3	112	105	3	22	30	1	112	111-	3 158	117-		
6	169	189	1	121	103-	Bal	<u>_14</u>		5	100	112-	6	58	31-	3	113	107	5 97	100.		
11	231	239	3	172	126-	(00-	L)	001	7	61	89	¢		.,	5	105	100-	7 61	93-		
15	180	100	5	172	187-	4	316	265	(09	·L)		0	8.L) 33	33	7	74	92	· · · · ·	04-		
17	145	131-	8	100	32- 93	8	183	185	ĩ	153	131	2	33	32-	(2.9.	L)		0 75	61-		
21	145 78	199- 84	10	52 110	66 104-	10	182	175-	2	56 143	62 133~	(1,	9.L) 125	105	0	26 71	33- 93	2 55	40- 50		
(2,8	·L)		12	233	214 98	(01· 2	·L) 97	101	4	44 104	58- 116	2 4	113 91	96- 98	2	43 78	45 87-	3 29	31 47-		
0	140	129	13	165	122	3	95 77	76-	6	34	55	6	64	- 65	4	33	34-	5 33	4]-		
4	144	161-	17	ိုင်ဂို	86-	5	40	48	(0	10.11		ę.,	10·L)	20	6	25	35	7 17	29		
8	104	110	19	129	150-	7	31	46-	ò	90	80-	ĝ	128	33-	(2,10)•L)	~	(4,7.L)			
10	64	104	21	108	200-	9	30	45	2	70	70		20	30	1	129	138-	1 75	64		
16	105	187	(3,	8-L)		10	45	53	3	169 55	146 67~	6	11·L) 57	64	23	51 114	128	2 /5 3 66	66 72-		
19	131	193-	0	132	118-	(02.	·L) 165	2ó1	5	123 56	126- 72	1	24 48	28 63-	4	51	74-	4 58 5 43	62- 5,0		
(3,3	·L)	21.2	5 11	197	155- 94	2	253 252	262- 228	(0.	11-11		3	26	36-	(3.3.	L) 140	97	6 43	59		
2	445	58	15	131	125	6	190	180-	1,	83	79 66-	(2,	2·L)	222	2	59 63	88- 82	(4,6·L) 0 71	76-		
6	188 319	150 254 -	16	88 65	91-	10	150	142-	10	12.13		2	126	158-	6	47	72-	1 77	60		
10	139 491	111- 377-	(3.	9.L)		(03-	·L)		0.	113	71-	6	128	153-	10	33	51-	3 71	23		
12 16	86 216	54 192	0 4	206 61	220 63	0	118 194	122-	1	225	144-	10	70	112-	(3,4.	L)		4 53 5 54	69-		
20	234	152	6	138	153-	2	104	121	(1,	1.L)	71-	(2,	3.L)		1	61 165	58- 145-	(4,9·L)			
20	255	223-	10	159	196-	4	89	105-	ığ	28	46	0	95	93-	23	45 94	57 121	0 20 2 17	3C- 25		
20	04	20				2	154	147	~	-28	12	4	214	100	4	26	49				

was not attempted. Instead, a three-dimensional Patterson synthesis was computed, from which all Ba · · · Ba interactions had been subtracted by using $|F_{\varrho}^2 - F_{c}^2|$ as coefficients. All the Ba · · · Li vectors were identified in this synthesis which led to the location of all Li atoms. After three cycles of isotropic least-squares refinement, including all atoms, the R(F) value was reduced to 0.14. The final atomic parameters and atomic distances are given in Table 4. The projection of the atomic positions onto the xyplane is shown in Fig. 3(a) and (b). The arrangement of Li atoms surrounding the three Ba atoms is pictorially shown in Fig. I(d). The only feature which makes the atomic arrangement of the small atoms (Li) around the large atoms (Ba) distinct from that found in Sr_6Mg_{23} and $SrMg_4$ is that the clusters of three Ba atoms at $z = \frac{1}{4}$ and $\frac{3}{4}$ are not completely enveloped

Fig. 3. (a), (b) $BaLi_4$; Projection of Ba (large circles) and Li (small circles) onto the xy plane (full cell) at two levels of z. Parameters marked with an asterisk refer to Li atoms represented by light circles. by small atoms (Li), but rather are touching each other in the z direction.

Discussion

Since the Mg content of the compounds $SrMg_4$ and Sr_6Mg_{23} differs by only 0.69 at.% (1.06 wt.%), it was reasonable to assume that they were allotropic forms of the same compound. However, this structure determination proves that not only are the two compounds different, but that $SrMg_4$ contains triangularly as well as octahedrally clustered Sr atoms; whereas Sr_6Mg_{23} contains only octahedrally clustered Sr atoms. Therefore, the phase diagram, especially in the range which encompasses these two compounds, should be re-examined.

So far, A₆B₂₃-type compounds have been observed in the following intermetallic binary systems*; Th-Mn, Sr-Li, Sr-Mg and Ba-Mg[†]. One wonders why Ba₆Li₂₃ does not exist. In order to determine whether the A₆B₂₃-type compound is primarily atomic-size dependent, a table of atomic radius ratios (r_A/r_B) for the elements which form A₆B₂₃-type compounds was made (Table 6(a)). It was immediately noted from this table that in the systems in which the A₆B₂₃-type compound has been found, the atomic radius ratio (r_A/r_B) falls in the range, 1.32 to 1.38; whereas the Ba/Li atomic radius ratio, 1.43, is outside this range. This supports the view that the A₆B₂₃-type compound is atomic-size-factor dominated and consequently serves to explain the non-existence of Ba₆Li₂₃. Table 6(b) shows all compounds formed in each binary system comprised of elements which form A₆B₂₃-type compounds. It is noted from this table that the systems in which the A_6B_{23} -type compound is found are the ones which have three or more intermediate phases.

Another interesting observation, in this series of intermetallic compounds, is the close similarity of the atomic arrangement of Mg(Li) atoms around the triangularly and octahedrally arranged Sr(Ba) atoms. This is seen in Fig. 1(b), (c) and (d). The observed interatomic distances between Sr atoms seem to be fairly constant both in Sr₆Mg₂₃ and SrMg₄. The Mg interatomic distances, on the other hand, appear to vary more, ranging from the shortest distances of

Table 6

- (a) Atomic radius ratios (r_A/r_B) for elements which form A_6B_{23} -type compounds.*
- (b) Compounds formed by elements which form A_6B_{23} -type compounds. Diagonal lines indicate systems which have not been investigated.

r _B	Sr(2.10)	Ba(2•17)	Th (1· 79)						
Li(1·52)	1.38	1.43	1.18						
Mg(1•59)	1.32	1.35	1.13						
Mn(1•36)	1.54	1.59	1.32						
(0)									

* Atomic radii are from Interatomic Distances (1958).

3.056 Å between $Mg(f)_2-Mg(d)$ in Sr_6Mg_{23} , and 3.055 Å between $Mg(e)-Mg(k)_2$ in $SrMg_4$ to the longest distances, 3.464 Å, between $Mg(f)_1-Mg(f)_2$ in Sr_6Mg_{23} and 3.338 Å between Mg(g)-Mg(k)' in $SrMg_4$. However, the minimum $Mg(f)_2-Mg(d)$ distance in Sr_6Mg_{23} and the minimum $Mg(e)-Mg(k)_2$ distance in Sr_6Mg_{23} and the minimum $Mg(e)-Mg(k)_2$ distance in $SrMg_4$ are between Mg atoms with the same relationship to the octahedrally clustered Sr atoms. In BaLi₄, both the intra- and inter-triangular Ba-Ba distances have a constant value of 4.58 Å. This indicates an atomic radius of 2.29 Å for the Ba atom.

We wish to acknowledge the financial support of this investigation by the U.S. Atomic Energy Commission and the IBM 7094 computer time donated to us by the General Electric Electronics Park Computer Laboratory, Syracuse, New York, through Mr A. Van Dyck. We also wish to record appreciation to Dr D. V. Keller for helpful discussions concerning the structure as well as for supplying us with single crystals of BaLi₄.

References

^{*} The A_6B_{23} -type compounds have also been found in ternary systems; e.g. $Mg_6Si_7Cu_{16}$ (Nagorsen & Witte, 1953; Bergman & Waugh, 1953, 1956), $Ti_6Si_7Ni_{16}$ (Beattie & Snyder, 1956; Beattie & Hagel, 1957). The compounds of $A_6Si_7Ni_{16}$, where A = Mn, V, Nb, Ta, Zr, Hf and the compound $Mn_6Ge_7Ni_{16}$ were reported by Gladyshevskii *et al.* (1962). Several additional isotypic ternary phases (so called 'G phases') were reported in a paper by Spiegel, Bardos & Beck (1963).

[†] After the present paper had been written and accepted for publication, one of the authors (Wang, 1964) in his continuing investigation at the U.S. Naval Ordnance Laboratory, has confirmed that the A_6B_{23} -type compound also exists in the following binary systems; Y-Mn, Nd-Mn, Sm-Mn, Gd-Mn, Tb-Mn, Dy-Mn, Ho-Mn, Er-Mn and Tm-Mn (see also Wang, Gilfrich, Ernst & Hubbard (1964) for a report on the crystal structure of Gd_6Mn_{23}).

BEATTIE, H. J. Jr. & HAGEL, W. C. (1957). Trans. Amer. Inst. Min. (metall) Engrs. 209, 911.

- BEATTIE, H. J. Jr. & VER SNYDER, F. L. (1956). Nature, Lond., 178, 208.
- BERGMAN, G. & WAUGH, J. L. T. (1953). Acta Cryst. 6, 93.
- BERGMAN, G. & WAUGH, J. L. T. (1956). Acta Cryst. 9, 214.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS, A Fortran Crystallographic Least-Squares Program. Oak Ridge National Lab., Rep. No. ORNL-TM-305, Oak Ridge, Tennessee, U.S.A.
- FLORIO, J. V., RUNDLE, R. E. & SNOW, A. I. (1952). Acta Cryst. 5, 449.
- GLADYSCHEVSKII, E. I., KRIPYAKEVICH, P. I., KUZMA, YU. B. & TESLYUK, M. YU. (1962). Soviet Phys. 6, No. 5, 615.
- COLDISH, E. & MARSH, R. E. (1955). Abstract Annu. Meet. A.C.A. June 27–July 2.
- HELLNER, E. & LAVES, F. (1943). Z. Kristallogr. 105, 134.
- HUME-ROTHERY, W. (1962). Atomic Theory for Students of Metallurgy, p. 306.
- Interatomic Distances (1958). London: The Chemical Society.
- KELLER, D. V. (1958). Ph.D. Thesis, Syracuse Univ., Syracuse, N.Y.
- KLEMM, W. & KINKELACKER, F. (1947). Z. anorg. Chem. 225, 2.
- KRIPYAKEVICH, P. I. & EVDOKIMENKO, V. I. (1962). Kristallographiya, 7, 22.

- MISKELL, C. F. (1948). Master Thesis, Syracuse Univ., Syracuse, N.Y.
- NAGORSEN, G. & WITTE, H. (1953). Z. anorg. Chem. 271, 144.
- NOWOTNY, H. (1942). Z. Metallk. 34, 247.
- RAY, J. P. (1947). Ph.D. Thesis, Syracuse Univ., Syracuse, N.Y.
- SLY, W. G., SHOEMAKER, D. P. & VAN DEN HENDE, J. H. (1962). ERFR-2, Two- and Three-Dimensional Crystallographic Fourier Summation Program for the IBM 7090 Computer, Massachusetts Institute of Technology, Cambridge, Mass., U.S.A.
- SPIEGEL, F. X., BARDOS, D. & BECK, P. A. (1963). Trans. Amer. Inst. Min. (metall) Engrs, 227, 575.
- VOSSKÜHLER, H. (1939). Metallwirtschaft, 18, 377.
- WANG, F. E. (1964). Trans. Amer. Inst. Min. (metall) Engrs. In the press.
- WANG, F. E., GILFRICH, J. V., ERNST, D. W. & HUB-BARD, W. M. (1964). Acta Cryst. 17, 931.
- WANG, F. E., KANDA, F. A. & KING, A. J. (1962). J. Phys. Chem. 66, 2142.
- WANG, F. E., KANDA, F. A., MISKELL, C. F. & KING, A. J. (1963). Acta Cryst. 16, 697.
- WANG, F. E., KING, A. J. & KANDA, F. A. (1962). J. Phys. Chem. 66, 2138.
- WEIBKE, F. & SCHMIDT, W. (1940). Z. Elektrochem. 44, 357.
- ZEEK, W. C. (1955). Ph.D. Thesis, Syracuse Univ., Syracuse, N.Y.

Acta Cryst. (1965). 18, 31

Layer Structure Polytypism Among Niobium and Tantalum Selenides

BY BRUCE E. BROWN AND DONALD J. BEERNTSEN

Research Division, Allis-Chalmers Mfg. Co., Milwaukee, Wisconsin, U.S.A.

(Received 3 February 1964)

Single crystals of several varieties of tantalum and niobium selenide layer structures have been grown by vapor transport methods. Two two-layer forms have the NbS₂ structure, a three-layer form is like rhombohedral MoS₂, and two four-layer forms are new structures with a selenium stacking sequence of AABBAACC..., and AABABBAB..., respectively. These have been refined by least-squares methods. Refinement adjusts the *c* coordinates of the selenium atoms 0.1 Å away from positions in which each atom sheet is spaced at equal intervals along *z*. This adjustment moves the selenium atoms away from the interleaving metal atoms.

The trigonal prism coordination units in the niobium and tantalum compounds tend to be slightly shorter in the z direction and longer in the x direction than similar molybdenum coordination units.

Introduction

The disulfides of molybdenum, tungsten and niobium (Jellinek, 1963) and the diselenides of molybdenum (James & Lavik, 1963) and tungsten (Glemser, Sauer & König, 1948) are layer structures in which each cation* has as nearest neighbors six anions arranged at the apices of a trigonal prism. Disulfides of tantalum have been reported in which cations have trigonal prismatic and/or octahedral anion coordination (Jellinek, 1963). All of these structures can be considered as two-dimensionally infinite 'layer molecules' within which the bonding is quite strong. These 'layer molecules' are stacked in a close-packed manner and the bonding between them is weak.

The common notation used in the description of close packed structures, *i.e.* a hexagonal close

^{*} It is recognized that there is probably a high degree of covalency in these compounds; nevertheless, the terms cation and anion will be used to designate the two species involved.